Движение вверх по наклонной плоскости. Тело на наклонной плоскости

Движение вверх по наклонной плоскости. Тело на наклонной плоскости

Букина Марина, 9 В

Движение тела по наклонной плоскости

с переходом на горизонтальную

В качестве исследуемого тела я взяла монету достоинством 10 рублей (грани ребристые).

Технические характеристики:

Диаметр монеты – 27,0 мм;

Масса монеты - 8,7 г;

Толщина - 4 мм;

Монета изготовлена из сплава латунь-мельхиор.

За наклонную плоскость я решила принять книгу длиной 27 см. Она и будет являться наклонной плоскостью. Горизонтальная же плоскость неограниченная, т. к. цилиндрическое тело, а в дальнейшем монета, скатываясь с книги, будет продолжать свое движение на полу (паркетная доска). Книга поднята на высоту 12 см от пола; угол между вертикальной плоскостью и горизонтальной равен 22 градусам.

В качестве дополнительного оборудования для измерений были взяты: секундомер, линейка обыкновенная, длинная нить, транспортир, калькулятор.

На Рис.1. схематичное изображение монеты на наклонной плоскости.

Выполним пуск монеты.

Полученные результаты занесем в таблицу 1

вид плоскости

наклонная

плоскость

горизонтальная

плоскость

*0,27 м величина постоянная tобщ=90,04

Таблица 1

Траектория движения монеты во всех опытах была различна, но некоторые части траектории были похожи. По наклонной плоскости монета двигалась прямолинейно, а при движении на горизонтальной плоскости – криволинейно.

На Рисунке 2 изображены силы, действующие на монету во время её движения по наклонной плоскости:

С помощью II Закона Ньютона выведем формулу для нахождения ускорения монеты (по Рис.2.):

Для начала, запишем формулу II Закона Ньютона в векторном виде.

Где - ускорение, с которым движется тело, - равнодействующая сила (силы, действующие на тело), https://pandia.ru/text/78/519/images/image008_3.gif" width="164" height="53">, на наше тело во время движения действуют три силы: сила тяжести (Fтяж), сила трения (Fтр) и сила реакции опоры (N);

Избавимся от векторов, при помощи проецирования на оси X и Y:

Где - коэффициент трения

Т. к. у нас нет данных о числовом значении коэффициента трения монеты о нашу плоскость, воспользуемся другой формулой:

Где S – путь, пройденный телом, V0- начальная скорость тела, а – ускорение, с которым двигалось тело, t – промежуток времени движения тела.

т. к. ,

в ходе математических преобразований получаем следующую формулу:

При проецировании этих сил на ось Х (Рис.2.) видно, что направления векторов пути и ускорения совпадают, запишем полученную форму, избавившись от векторов:

За S и t примем средние значения из таблицы, найдем ускорение и скорость (по наклонной плоскости тело двигалось прямолинейно равноускоренно).

https://pandia.ru/text/78/519/images/image021_1.gif" align="left" width="144" height="21">

Аналогично найдём ускорение тела на горизонтальной плоскости (по горизонтальной плоскости тело двигалось прямолинейно равнозамедленно)

R=1, 35 см, где R – радиус монеты

где - угловая скорость, -центростремительное ускорение, - частота обращения тела по окружности

Движение тела по наклонной плоскости с переходом на горизонтальную – прямолинейное равноускоренное, сложное, которое можно разделить на вращательное и поступательное движения.

Движение тела на наклонной плоскости является прямолинейным равноускоренным.

По II Закону Ньютона видно, что ускорение зависит только от равнодействующей силы (R), а она на протяжении всего пути по наклонной плоскости остается величиной постоянной, т. к. в конечной формуле, после проецирования II Закона Ньютона, величины, задействованные в формуле являются постоянными https://pandia.ru/text/78/519/images/image029_1.gif" width="15" height="17">поворота из некоторого начального положения.

Поступательным называется такое движение абсолютно твердого тела, при котором любая прямая, жестко связанная с телом, перемещается, оставаясь параллельной самой себе. Все точки тела, движущегося поступательно, в каждый момент времени имеют одинаковые скорости и ускорения, а их траектории полностью совмещаются при параллельном переносе.

Факторы, влияющие на время движения тела

по наклонной плоскости

с переходом на горизонтальную

Зависимость времени от монет разного достоинства (т. е. имеющих разный d (диаметр)).

Достоинство монеты

d монеты, см

tср, с

Таблица 2

Чем больше диаметр монеты, тем больше время её движения.

Зависимость времени от угла наклона

Угол наклона

tср, с

Таблица 3

На поверхности Земли сила тяжести (гравитация ) постоянна и равна произведению массы падающего тела на ускорение свободного падения: F g = mg

Следует заметить, что ускорение свободного падения величина постоянная: g=9,8 м/с 2 , и направлена к центру Земли. Исходя из этого можно сказать, что тела с разной массой будут падать на Землю одинаково быстро. Как же так? Если бросить с одинаковой высоты кусочек ваты и кирпич, то последний проделает свой путь до земли быстрее. Не забывайте о сопротивлении воздуха! Для ваты оно будет существенным, поскольку ее плотность очень мала. В безвоздушном пространстве кирпич и вата упадут одновременно.

Шар движется по наклонной плоскости длиной 10 метров, угол наклона плоскости 30°. Какова будет скорость шара в конце плоскости?

На шар действует только сила тяжести F g , направленная вниз перпендикулярно к основанию плоскости. Под действием этой силы (составляющей, направленной вдоль поверхности плоскости) шар будет двигаться. Чему будет равна составляющая силы тяжести, действующей вдоль наклонной плоскости?

Для определения составляющей необходимо знать угол между вектором силы F g и наклонной плоскостью.

Определить угол довольно просто:

  • сумма углов любого треугольника равна 180°;
  • угол между вектором силы F g и основанием наклонной плоскости равен 90°;
  • угол между наклонной плоскостью и ее основанием равен α

Исходя из вышесказанного, искомый угол будет равен: 180° - 90° - α = 90° - α

Из тригонометрии:

F g накл = F g ·cos(90°-α)

Sinα = cos(90°-α)

F g накл = F g ·sinα

Это действительно так:

  • при α=90° (вертикальная плоскость) F g накл = F g
  • при α=0° (горизонтальная плоскость) F g накл = 0

Определим ускорение шара из известной формулы:

F g ·sinα = m·a

A = F g ·sinα/m

A = m·g·sinα/m = g·sinα

Ускорение шара вдоль наклонной плоскости не зависит от массы шара, а только от угла наклона плоскости.

Определяем скорость шара в конце плоскости:

V 1 2 - V 0 2 = 2·a·s

(V 0 =0) - шар начинает движение с места

V 1 2 = √2·a·s

V = 2·g·sinα·S = √2·9,8·0,5·10 = √98 = 10 м/с

Обратите внимание на формулу! Скорость тела в конце наклонной плоскости будет зависеть только от угла наклона плоскости и ее длины.

В нашем случае скорость 10 м/с в конце плоскости будет иметь и бильярдный шар, и легковой автомобиль, и самосвал, и школьник на санках. Конечно же, трение мы не учитываем.

Тело массой 2 кг под действием силы F перемещается вверх по наклонной плоскости на расстояние расстояние тела от поверхности Земли при этом увеличивается на

Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 30 Н. Какую работу при этом перемещении совершила сила тяжести? (Ответ дайте в джоулях.) Ускорение свободного падения примите равным коэффициент трения

Решение.

Работа силы определяется как скалярное произведение вектора силы и вектора перемещения тела. Следовательно, сила тяжести при подъеме тела вверх по наклонной плоскости совершила работу ( - угол при основании наклонной плоскости)

Ответ: −60.

Альтернативный способ решения.

Сила тяжести относится к типу сил, называемых потенциальными. Эти силы обладают таким свойством, что их работа по любому замкнутому пути всегда равна нулю (это можно считать определением). В качестве других примеров потенциальных сил можно упомянуть силу упругости, подчиняющуюся закону Гука кулоновскую силу взаимодействия зарядов силу всемирного тяготения (как обобщение простой силы тяжести) Примером непотенциальной силы, то есть не обладающей вышеописанным свойством, может служить, например, сила трения.

Как легко заметить, для всех сил, которые здесь названы потенциальными определена величина потенциальной энергии: - для силы тяжести, - для силы упругости, - для сил кулоновского взаимодействия, и, наконец, - для силы всемирного тяготения. Оказывается, что именно замечательное свойство потенциальных сил, легшее в основу их определения, и позволяется ввести для них понятия соответствующих потенциальных энергий. В общем случае это делается следующим образом. Пусть при переносе тела из точки 1 в точку 2 потенциальная сила совершила работу Тогда, по определению, говорят, что разность значений соответствующей потенциальной энергии в точках 2 и 1 равна Поскольку это определение содержит всегда только разность потенциальных энергий в двух точках, потенциальная энергия всегда оказывается определенной с точностью до константы. Это должен быть хорошо известный вам факт. Применим теперь это к данной задаче.

Нам требуется найти работу силы тяжести, для силы тяжести мы знаем, что такое потенциальная энергия. По выписанной ранее формуле получаем. Что искомая работа равна изменению потенциальной энергии тела, взятой со знаком минус. Высота тела над поверхностностью Земли увеличилась на следовательно, его энергия увеличилась на

А значит, работа силы тяжести равна

В качестве закрепления материала, предлагаю рассмотреть следующую задачу. С поверхности Земли стартует ракета массой Определите, какую работу совершит сила притяжения со стороны Земли к тому моменту, когда ракета будет находиться на расстоянии двух земных радиусов от центра Земли.

Решение.

Использовать в лоб формулу «» не удастся, поскольку сила притяжения уменьшается по мере удаления от Земли, единственный шанс применить эту формулу - начать интегрировать. Мы это оставим и попробуем ещё раз применить наши знания. Сила притяжения к Земле является потенциальной. Для неё мы знаем величину потенциальной энергии. Определим на сколько изменится потенциальная энергия ракеты.

Следовательно, сила притяжения совершила работу

Как и ожидалось, эта работа отрицательна.

Пример для самостоятельного разбора:

Пружина жесткостью 10 Н/м растянута на 5 см, какую работу совершит сила упругости при её растяжении ещё на 5 см?

Тело, которое соскальзывает вниз по наклонной плоскости . В этом случае на него действуют следующие силы:

Сила тяжести mg, направленная вертикально вниз;

Сила реакции опоры N, направленная перпендикулярно плоскости;

Сила трения скольжения Fтр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела).

Введем наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg, а вектора силы трения Fтр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.

Сила трения скольжения Fтр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: Fтр = µmg cos(α). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз, получаем выражения суммарной равнодействующей силы и ускорения:

Fx = mg(sin(α) – µ cos(α));

ax = g(sin(α) – µ cos(α)).

ускорение:

скорость равна

v=ax*t=t*g(sin(α) – µ cos(α))

через t=0.2 с

скорость равна

v=0.2*9.8(sin(45)-0.4*cos(45))=0.83 м/с

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

Fт=GMm/R2 (2.28)

где М - масса Земли; R - радиус Земли.

Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле (2,28) модуль ускорения свободного падения g находят по формуле

g=Fт/m=GM/R2. (2.29)

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы (2.28) видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

В § 5 отмечалось также, что на ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с2.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.

Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).



Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Fт + Fуп=mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

Проецирование сил. Движение по наклонной плоскости

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Неколлинеарные силы.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых... Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело (сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:


На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае - с минусом.

По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.

Fтр = μN, где N - сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Получаем, что:

Коэффициент трения - безразмерная величина. Следовательно, единиц измерения нет.

Ответ: 0,25

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T - сила натяжения нити

На ось X: нет сил

Разберемся с направлением сил на ось Y:

Выразим T (силу натяжения) и подставим числительные значения:

Ответ: 65 Н

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе - это синус.

Отношение прилежащего катета к гипотенузе - это косинус.

Сила тяги на ось Y - отрезок (вектор) BC.

Сила тяги на ось X - отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X- это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй - 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL - силы натяжения. LM и BC - проекции на ось X, AC и KM - на ось Y.

Ответ: 4,22 кг

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае (здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Ответ: 6,36 м/с²

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:


Запишем второй закон Ньютона на X и Y:

Ответ: 6000 кг

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное - понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс - это отношение противолежащего катета к прилежащему:

Ответ: 7,5 см

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.